3.11.77 \(\int \frac {\sqrt {x}}{(a+b x^2+c x^4)^2} \, dx\) [1077]

Optimal. Leaf size=489 \[ \frac {x^{3/2} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

[Out]

1/2*x^(3/2)*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/8*c^(1/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-
(-4*a*c+b^2)^(1/2))^(1/4))*(b+(20*a*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-4*a*c+b^2)/(-b-(-4*a*c+b^2)^(1/2))^
(1/4)-1/8*c^(1/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b+(20*a*c-b^2)/(-4*a*c+b^2)^
(1/2))*2^(1/4)/a/(-4*a*c+b^2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)+1/8*c^(1/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4
*a*c+b^2)^(1/2))^(1/4))*(b+(-20*a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(1
/4)-1/8*c^(1/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(b+(-20*a*c+b^2)/(-4*a*c+b^2)^(
1/2))*2^(1/4)/a/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4)

________________________________________________________________________________________

Rubi [A]
time = 0.65, antiderivative size = 489, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1129, 1380, 1524, 304, 211, 214} \begin {gather*} \frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-\sqrt {b^2-4 a c}-b}}+\frac {\sqrt [4]{c} \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{\sqrt {b^2-4 a c}-b}}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\sqrt [4]{c} \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{\sqrt {b^2-4 a c}-b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/(a + b*x^2 + c*x^4)^2,x]

[Out]

(x^(3/2)*(b^2 - 2*a*c + b*c*x^2))/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (c^(1/4)*(b - (b^2 - 20*a*c)/Sqrt[
b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4)*a*(b^2 - 4*a*c)*(-b
 - Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(b + (b^2 - 20*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x]
)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4)*a*(b^2 - 4*a*c)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*(b -
(b^2 - 20*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4
)*a*(b^2 - 4*a*c)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*(b + (b^2 - 20*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2
^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4)*a*(b^2 - 4*a*c)*(-b + Sqrt[b^2 - 4*a*c])^(
1/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 1129

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1380

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(d*x)^(m + 1))*(
b^2 - 2*a*c + b*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*n*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(a*n*(p +
1)*(b^2 - 4*a*c)), Int[(d*x)^m*(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[b^2*(m + n*(p + 1) + 1) - 2*a*c*(m + 2*n*(
p + 1) + 1) + b*c*(m + n*(2*p + 3) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^
2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1]

Rule 1524

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx &=2 \text {Subst}\left (\int \frac {x^2}{\left (a+b x^4+c x^8\right )^2} \, dx,x,\sqrt {x}\right )\\ &=\frac {x^{3/2} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\text {Subst}\left (\int \frac {x^2 \left (-b^2+10 a c-b c x^4\right )}{a+b x^4+c x^8} \, dx,x,\sqrt {x}\right )}{2 a \left (b^2-4 a c\right )}\\ &=\frac {x^{3/2} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (c \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {x^2}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{4 a \left (b^2-4 a c\right )}+\frac {\left (c \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {x^2}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{4 a \left (b^2-4 a c\right )}\\ &=\frac {x^{3/2} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (\sqrt {c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} a \left (b^2-4 a c\right )}+\frac {\left (\sqrt {c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} a \left (b^2-4 a c\right )}-\frac {\left (\sqrt {c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} a \left (b^2-4 a c\right )}+\frac {\left (\sqrt {c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} a \left (b^2-4 a c\right )}\\ &=\frac {x^{3/2} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.26, size = 136, normalized size = 0.28 \begin {gather*} -\frac {\frac {4 x^{3/2} \left (b^2-2 a c+b c x^2\right )}{a+b x^2+c x^4}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b^2 \log \left (\sqrt {x}-\text {$\#$1}\right )-10 a c \log \left (\sqrt {x}-\text {$\#$1}\right )+b c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{8 a \left (-b^2+4 a c\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/(a + b*x^2 + c*x^4)^2,x]

[Out]

-1/8*((4*x^(3/2)*(b^2 - 2*a*c + b*c*x^2))/(a + b*x^2 + c*x^4) + RootSum[a + b*#1^4 + c*#1^8 & , (b^2*Log[Sqrt[
x] - #1] - 10*a*c*Log[Sqrt[x] - #1] + b*c*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/(a*(-b^2 + 4*a*c))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.06, size = 149, normalized size = 0.30

method result size
derivativedivides \(\frac {-\frac {b c \,x^{\frac {7}{2}}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) x^{\frac {3}{2}}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-b c \,\textit {\_R}^{6}+\left (10 a c -b^{2}\right ) \textit {\_R}^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 a \left (4 a c -b^{2}\right )}\) \(149\)
default \(\frac {-\frac {b c \,x^{\frac {7}{2}}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) x^{\frac {3}{2}}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-b c \,\textit {\_R}^{6}+\left (10 a c -b^{2}\right ) \textit {\_R}^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 a \left (4 a c -b^{2}\right )}\) \(149\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

2*(-1/4/a*b*c/(4*a*c-b^2)*x^(7/2)+1/4*(2*a*c-b^2)/a/(4*a*c-b^2)*x^(3/2))/(c*x^4+b*x^2+a)+1/8/a/(4*a*c-b^2)*sum
((-b*c*_R^6+(10*a*c-b^2)*_R^2)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*(b*c*x^(7/2) + (b^2 - 2*a*c)*x^(3/2))/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)
*x^2) - integrate(-1/4*(b*c*x^(5/2) + (b^2 - 10*a*c)*sqrt(x))/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c +
 (a*b^3 - 4*a^2*b*c)*x^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 12411 vs. \(2 (397) = 794\).
time = 42.36, size = 12411, normalized size = 25.38 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*(4*((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(b^9 -
45*a*b^7*c + 765*a^2*b^5*c^2 - 5880*a^3*b^3*c^3 + 18000*a^4*b*c^4 + (a^5*b^12 - 24*a^6*b^10*c + 240*a^7*b^8*c^
2 - 1280*a^8*b^6*c^3 + 3840*a^9*b^4*c^4 - 6144*a^10*b^2*c^5 + 4096*a^11*c^6)*sqrt((b^12 - 78*a*b^10*c + 2571*a
^2*b^8*c^2 - 45950*a^3*b^6*c^3 + 470625*a^4*b^4*c^4 - 2625000*a^5*b^2*c^5 + 6250000*a^6*c^6)/(a^10*b^18 - 36*a
^11*b^16*c + 576*a^12*b^14*c^2 - 5376*a^13*b^12*c^3 + 32256*a^14*b^10*c^4 - 129024*a^15*b^8*c^5 + 344064*a^16*
b^6*c^6 - 589824*a^17*b^4*c^7 + 589824*a^18*b^2*c^8 - 262144*a^19*c^9)))/(a^5*b^12 - 24*a^6*b^10*c + 240*a^7*b
^8*c^2 - 1280*a^8*b^6*c^3 + 3840*a^9*b^4*c^4 - 6144*a^10*b^2*c^5 + 4096*a^11*c^6)))*arctan(1/2*((b^11 - 47*a*b
^9*c + 853*a^2*b^7*c^2 - 7324*a^3*b^5*c^3 + 28400*a^4*b^3*c^4 - 40000*a^5*b*c^5 - (a^5*b^14 - 44*a^6*b^12*c +
720*a^7*b^10*c^2 - 6080*a^8*b^8*c^3 + 29440*a^9*b^6*c^4 - 82944*a^10*b^4*c^5 + 126976*a^11*b^2*c^6 - 81920*a^1
2*c^7)*sqrt((b^12 - 78*a*b^10*c + 2571*a^2*b^8*c^2 - 45950*a^3*b^6*c^3 + 470625*a^4*b^4*c^4 - 2625000*a^5*b^2*
c^5 + 6250000*a^6*c^6)/(a^10*b^18 - 36*a^11*b^16*c + 576*a^12*b^14*c^2 - 5376*a^13*b^12*c^3 + 32256*a^14*b^10*
c^4 - 129024*a^15*b^8*c^5 + 344064*a^16*b^6*c^6 - 589824*a^17*b^4*c^7 + 589824*a^18*b^2*c^8 - 262144*a^19*c^9)
))*sqrt((531441*b^24*c^8 - 76881798*a*b^22*c^9 + 5113978011*a^2*b^20*c^10 - 206852401350*a^3*b^18*c^11 + 56670
80000625*a^4*b^16*c^12 - 110792866500000*a^5*b^14*c^13 + 1584936775000000*a^6*b^12*c^14 - 16715805000000000*a^
7*b^10*c^15 + 128988375000000000*a^8*b^8*c^16 - 710150000000000000*a^9*b^6*c^17 + 2647500000000000000*a^10*b^4
*c^18 - 6000000000000000000*a^11*b^2*c^19 + 6250000000000000000*a^12*c^20)*x - 1/2*sqrt(1/2)*(6561*b^31*c^5 -
1032993*a*b^29*c^6 + 75634965*a^2*b^27*c^7 - 3414264975*a^3*b^25*c^8 + 106186248955*a^4*b^23*c^9 - 24079193784
59*a^5*b^21*c^10 + 41083864936232*a^6*b^19*c^11 - 536376931701360*a^7*b^17*c^12 + 5394460343808000*a^8*b^15*c^
13 - 41720627697600000*a^9*b^13*c^14 + 245614092480000000*a^10*b^11*c^15 - 1078472304000000000*a^11*b^9*c^16 +
 3410524800000000000*a^12*b^7*c^17 - 7314160000000000000*a^13*b^5*c^18 + 9488000000000000000*a^14*b^3*c^19 - 5
600000000000000000*a^15*b*c^20 - (6561*a^5*b^34*c^5 - 895212*a^6*b^32*c^6 + 56697732*a^7*b^30*c^7 - 2212069617
*a^8*b^28*c^8 + 59497163992*a^9*b^26*c^9 - 1169816993840*a^10*b^24*c^10 + 17397456159488*a^11*b^22*c^11 - 1997
63116583168*a^12*b^20*c^12 + 1791922585643008*a^13*b^18*c^13 - 12624164431147008*a^14*b^16*c^14 + 698350761891
59424*a^15*b^14*c^15 - 301610411758387200*a^16*b^12*c^16 + 1004700278784000000*a^17*b^10*c^17 - 25279719178240
00000*a^18*b^8*c^18 + 4641908326400000000*a^19*b^6*c^19 - 5864652800000000000*a^20*b^4*c^20 + 4554752000000000
000*a^21*b^2*c^21 - 1638400000000000000*a^22*c^22)*sqrt((b^12 - 78*a*b^10*c + 2571*a^2*b^8*c^2 - 45950*a^3*b^6
*c^3 + 470625*a^4*b^4*c^4 - 2625000*a^5*b^2*c^5 + 6250000*a^6*c^6)/(a^10*b^18 - 36*a^11*b^16*c + 576*a^12*b^14
*c^2 - 5376*a^13*b^12*c^3 + 32256*a^14*b^10*c^4 - 129024*a^15*b^8*c^5 + 344064*a^16*b^6*c^6 - 589824*a^17*b^4*
c^7 + 589824*a^18*b^2*c^8 - 262144*a^19*c^9)))*sqrt(-(b^9 - 45*a*b^7*c + 765*a^2*b^5*c^2 - 5880*a^3*b^3*c^3 +
18000*a^4*b*c^4 + (a^5*b^12 - 24*a^6*b^10*c + 240*a^7*b^8*c^2 - 1280*a^8*b^6*c^3 + 3840*a^9*b^4*c^4 - 6144*a^1
0*b^2*c^5 + 4096*a^11*c^6)*sqrt((b^12 - 78*a*b^10*c + 2571*a^2*b^8*c^2 - 45950*a^3*b^6*c^3 + 470625*a^4*b^4*c^
4 - 2625000*a^5*b^2*c^5 + 6250000*a^6*c^6)/(a^10*b^18 - 36*a^11*b^16*c + 576*a^12*b^14*c^2 - 5376*a^13*b^12*c^
3 + 32256*a^14*b^10*c^4 - 129024*a^15*b^8*c^5 + 344064*a^16*b^6*c^6 - 589824*a^17*b^4*c^7 + 589824*a^18*b^2*c^
8 - 262144*a^19*c^9)))/(a^5*b^12 - 24*a^6*b^10*c + 240*a^7*b^8*c^2 - 1280*a^8*b^6*c^3 + 3840*a^9*b^4*c^4 - 614
4*a^10*b^2*c^5 + 4096*a^11*c^6))) - (729*b^23*c^4 - 86994*a*b^21*c^5 + 4700619*a^2*b^19*c^6 - 151648714*a^3*b^
17*c^7 + 3240737969*a^4*b^15*c^8 - 48070563100*a^5*b^13*c^9 + 503690450000*a^6*b^11*c^10 - 3715387000000*a^7*b
^9*c^11 + 18824300000000*a^8*b^7*c^12 - 62050000000000*a^9*b^5*c^13 + 119000000000000*a^10*b^3*c^14 - 10000000
0000000*a^11*b*c^15 - (729*a^5*b^26*c^4 - 84807*a^6*b^24*c^5 + 4445469*a^7*b^22*c^6 - 138927340*a^8*b^20*c^7 +
 2884712240*a^9*b^18*c^8 - 41968650816*a^10*b^16*c^9 + 439511597568*a^11*b^14*c^10 - 3350499342336*a^12*b^12*c
^11 + 18578963128320*a^13*b^10*c^12 - 74005426176000*a^14*b^8*c^13 + 205936435200000*a^15*b^6*c^14 - 379514880
000000*a^16*b^4*c^15 + 415744000000000*a^17*b^2*c^16 - 204800000000000*a^18*c^17)*sqrt((b^12 - 78*a*b^10*c + 2
571*a^2*b^8*c^2 - 45950*a^3*b^6*c^3 + 470625*a^4*b^4*c^4 - 2625000*a^5*b^2*c^5 + 6250000*a^6*c^6)/(a^10*b^18 -
 36*a^11*b^16*c + 576*a^12*b^14*c^2 - 5376*a^13*b^12*c^3 + 32256*a^14*b^10*c^4 - 129024*a^15*b^8*c^5 + 344064*
a^16*b^6*c^6 - 589824*a^17*b^4*c^7 + 589824*a^18*b^2*c^8 - 262144*a^19*c^9)))*sqrt(x))*sqrt(sqrt(1/2)*sqrt(-(b
^9 - 45*a*b^7*c + 765*a^2*b^5*c^2 - 5880*a^3*b^3*c^3 + 18000*a^4*b*c^4 + (a^5*b^12 - 24*a^6*b^10*c + 240*a^7*b
^8*c^2 - 1280*a^8*b^6*c^3 + 3840*a^9*b^4*c^4 - ...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

integrate(sqrt(x)/(c*x^4 + b*x^2 + a)^2, x)

________________________________________________________________________________________

Mupad [B]
time = 6.56, size = 2500, normalized size = 5.11 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(a + b*x^2 + c*x^4)^2,x)

[Out]

atan(((((2048*b^19*c^4 - 116736*a*b^17*c^5 - 10905190400*a^9*b*c^13 + 2852864*a^2*b^15*c^6 - 39247872*a^3*b^13
*c^7 + 335708160*a^4*b^11*c^8 - 1857421312*a^5*b^9*c^9 + 6670516224*a^6*b^7*c^10 - 15042871296*a^7*b^5*c^11 +
19386073088*a^8*b^3*c^12)/(64*(a^2*b^14 - 16384*a^9*c^7 - 28*a^3*b^12*c + 336*a^4*b^10*c^2 - 2240*a^5*b^8*c^3
+ 8960*a^6*b^6*c^4 - 21504*a^7*b^4*c^5 + 28672*a^8*b^2*c^6)) - (x^(1/2)*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1/2
) + 73728000*a^10*b*c^10 + 2085*a^2*b^17*c^2 - 36320*a^3*b^15*c^3 + 404160*a^4*b^13*c^4 - 3001344*a^5*b^11*c^5
 + 15064576*a^6*b^9*c^6 - 50503680*a^7*b^7*c^7 + 108380160*a^8*b^5*c^8 - 134676480*a^9*b^3*c^9 - 2500*a^3*c^3*
(-(4*a*c - b^2)^15)^(1/2) - 69*a*b^19*c + 525*a^2*b^2*c^2*(-(4*a*c - b^2)^15)^(1/2) - 39*a*b^4*c*(-(4*a*c - b^
2)^15)^(1/2))/(8192*(a^5*b^24 + 16777216*a^17*c^12 - 48*a^6*b^22*c + 1056*a^7*b^20*c^2 - 14080*a^8*b^18*c^3 +
126720*a^9*b^16*c^4 - 811008*a^10*b^14*c^5 + 3784704*a^11*b^12*c^6 - 12976128*a^12*b^10*c^7 + 32440320*a^13*b^
8*c^8 - 57671680*a^14*b^6*c^9 + 69206016*a^15*b^4*c^10 - 50331648*a^16*b^2*c^11)))^(1/4)*(3355443200*a^10*c^13
 - 4096*a*b^18*c^4 + 196608*a^2*b^16*c^5 - 4005888*a^3*b^14*c^6 + 45580288*a^4*b^12*c^7 - 320471040*a^5*b^10*c
^8 + 1448607744*a^6*b^8*c^9 - 4217372672*a^7*b^6*c^10 + 7625244672*a^8*b^4*c^11 - 7751073792*a^9*b^2*c^12))/(1
6*(a^2*b^12 + 4096*a^8*c^6 - 24*a^3*b^10*c + 240*a^4*b^8*c^2 - 1280*a^5*b^6*c^3 + 3840*a^6*b^4*c^4 - 6144*a^7*
b^2*c^5)))*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1/2) + 73728000*a^10*b*c^10 + 2085*a^2*b^17*c^2 - 36320*a^3*b^15
*c^3 + 404160*a^4*b^13*c^4 - 3001344*a^5*b^11*c^5 + 15064576*a^6*b^9*c^6 - 50503680*a^7*b^7*c^7 + 108380160*a^
8*b^5*c^8 - 134676480*a^9*b^3*c^9 - 2500*a^3*c^3*(-(4*a*c - b^2)^15)^(1/2) - 69*a*b^19*c + 525*a^2*b^2*c^2*(-(
4*a*c - b^2)^15)^(1/2) - 39*a*b^4*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^5*b^24 + 16777216*a^17*c^12 - 48*a^6*b
^22*c + 1056*a^7*b^20*c^2 - 14080*a^8*b^18*c^3 + 126720*a^9*b^16*c^4 - 811008*a^10*b^14*c^5 + 3784704*a^11*b^1
2*c^6 - 12976128*a^12*b^10*c^7 + 32440320*a^13*b^8*c^8 - 57671680*a^14*b^6*c^9 + 69206016*a^15*b^4*c^10 - 5033
1648*a^16*b^2*c^11)))^(3/4) + (x^(1/2)*(81*b^7*c^8 + 3060*a*b^5*c^9 + 600000*a^3*b*c^11 - 98000*a^2*b^3*c^10))
/(16*(a^2*b^12 + 4096*a^8*c^6 - 24*a^3*b^10*c + 240*a^4*b^8*c^2 - 1280*a^5*b^6*c^3 + 3840*a^6*b^4*c^4 - 6144*a
^7*b^2*c^5)))*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1/2) + 73728000*a^10*b*c^10 + 2085*a^2*b^17*c^2 - 36320*a^3*b
^15*c^3 + 404160*a^4*b^13*c^4 - 3001344*a^5*b^11*c^5 + 15064576*a^6*b^9*c^6 - 50503680*a^7*b^7*c^7 + 108380160
*a^8*b^5*c^8 - 134676480*a^9*b^3*c^9 - 2500*a^3*c^3*(-(4*a*c - b^2)^15)^(1/2) - 69*a*b^19*c + 525*a^2*b^2*c^2*
(-(4*a*c - b^2)^15)^(1/2) - 39*a*b^4*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^5*b^24 + 16777216*a^17*c^12 - 48*a^
6*b^22*c + 1056*a^7*b^20*c^2 - 14080*a^8*b^18*c^3 + 126720*a^9*b^16*c^4 - 811008*a^10*b^14*c^5 + 3784704*a^11*
b^12*c^6 - 12976128*a^12*b^10*c^7 + 32440320*a^13*b^8*c^8 - 57671680*a^14*b^6*c^9 + 69206016*a^15*b^4*c^10 - 5
0331648*a^16*b^2*c^11)))^(1/4)*1i - (((2048*b^19*c^4 - 116736*a*b^17*c^5 - 10905190400*a^9*b*c^13 + 2852864*a^
2*b^15*c^6 - 39247872*a^3*b^13*c^7 + 335708160*a^4*b^11*c^8 - 1857421312*a^5*b^9*c^9 + 6670516224*a^6*b^7*c^10
 - 15042871296*a^7*b^5*c^11 + 19386073088*a^8*b^3*c^12)/(64*(a^2*b^14 - 16384*a^9*c^7 - 28*a^3*b^12*c + 336*a^
4*b^10*c^2 - 2240*a^5*b^8*c^3 + 8960*a^6*b^6*c^4 - 21504*a^7*b^4*c^5 + 28672*a^8*b^2*c^6)) + (x^(1/2)*(-(b^21
+ b^6*(-(4*a*c - b^2)^15)^(1/2) + 73728000*a^10*b*c^10 + 2085*a^2*b^17*c^2 - 36320*a^3*b^15*c^3 + 404160*a^4*b
^13*c^4 - 3001344*a^5*b^11*c^5 + 15064576*a^6*b^9*c^6 - 50503680*a^7*b^7*c^7 + 108380160*a^8*b^5*c^8 - 1346764
80*a^9*b^3*c^9 - 2500*a^3*c^3*(-(4*a*c - b^2)^15)^(1/2) - 69*a*b^19*c + 525*a^2*b^2*c^2*(-(4*a*c - b^2)^15)^(1
/2) - 39*a*b^4*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^5*b^24 + 16777216*a^17*c^12 - 48*a^6*b^22*c + 1056*a^7*b^
20*c^2 - 14080*a^8*b^18*c^3 + 126720*a^9*b^16*c^4 - 811008*a^10*b^14*c^5 + 3784704*a^11*b^12*c^6 - 12976128*a^
12*b^10*c^7 + 32440320*a^13*b^8*c^8 - 57671680*a^14*b^6*c^9 + 69206016*a^15*b^4*c^10 - 50331648*a^16*b^2*c^11)
))^(1/4)*(3355443200*a^10*c^13 - 4096*a*b^18*c^4 + 196608*a^2*b^16*c^5 - 4005888*a^3*b^14*c^6 + 45580288*a^4*b
^12*c^7 - 320471040*a^5*b^10*c^8 + 1448607744*a^6*b^8*c^9 - 4217372672*a^7*b^6*c^10 + 7625244672*a^8*b^4*c^11
- 7751073792*a^9*b^2*c^12))/(16*(a^2*b^12 + 4096*a^8*c^6 - 24*a^3*b^10*c + 240*a^4*b^8*c^2 - 1280*a^5*b^6*c^3
+ 3840*a^6*b^4*c^4 - 6144*a^7*b^2*c^5)))*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1/2) + 73728000*a^10*b*c^10 + 2085
*a^2*b^17*c^2 - 36320*a^3*b^15*c^3 + 404160*a^4*b^13*c^4 - 3001344*a^5*b^11*c^5 + 15064576*a^6*b^9*c^6 - 50503
680*a^7*b^7*c^7 + 108380160*a^8*b^5*c^8 - 134676480*a^9*b^3*c^9 - 2500*a^3*c^3*(-(4*a*c - b^2)^15)^(1/2) - 69*
a*b^19*c + 525*a^2*b^2*c^2*(-(4*a*c - b^2)^15)^(1/2) - 39*a*b^4*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^5*b^24 +
 16777216*a^17*c^12 - 48*a^6*b^22*c + 1056*a^7*b^20*c^2 - 14080*a^8*b^18*c^3 + 126720*a^9*b^16*c^4 - 811008*a^
10*b^14*c^5 + 3784704*a^11*b^12*c^6 - 12976128*...

________________________________________________________________________________________